科技日报记者 刘霞
美国科学家在小型托卡马克反应堆内进行了一项最新实验,克服了实现稳定且强大聚变反应的两个关键障碍:让等离子体密度超出限制值20%,并让更稠密的等离子体保持稳定。但这项技术是否适用于更大设备仍有待验证。相关论文发表于4月24日的《自然》杂志。
DIII-D托卡马克聚变反应堆内部。
图片来源:《新科学家》网站
作为不产生二氧化碳的绿色能源,核聚变发电日益受到关注。获得聚变能的最常见方法是使用托卡马克装置。在托卡马克核聚变反应堆内,氢同位素氘和氚被加热到超高温度以产生等离子体,强磁场将这些带电等离子体约束在“磁笼子”里。但目前,要想让核聚变反应在“最佳点”运行以获得最佳发电效率,需要解决两个难题:提高等离子体密度并有效约束更稠密的等离子体。
在核聚变反应中,存在着所谓的格林沃尔德极限。超过这个极限,如果等离子体不脱离磁场束缚,就无法提高密度。但等离子体挣脱束缚又会损坏反应堆。而提高密度对提高发电量至关重要,实验表明,托卡马克反应堆的发电量与燃料密度的平方成正比。
在最新实验中,美国通用原子公司研究团队让DIII-D国家聚变设施内的托卡马克反应堆运行了2.2秒,等离子体平均密度比格林沃尔德限值高20%。至关重要的是,新实验是在约束改善因子大于1的条件下运行,这意味着等离子体被成功地限制在适当位置。
不过,DIII-D等离子体室的外半径仅1.6米,目前尚不清楚该方法是否适用于正在法国建设的半径为6.2米的下一代托卡马克装置——国际热核聚变实验堆。因为等离子体非常复杂,条件的微小变化会导致行为的巨大变化。
研究人员表示,许多反应堆设计需要同时实现高约束和高密度,这是首次有实验实现这一点。这一成果向实用核聚变发电厂迈出了重要一步,但商业反应堆可能还需多年才能实现。
责任编辑: 常丽君本文链接:http://www.gihot.com/news-2-6552-0.html让等离子体密度提升并保持稳定,核聚变反应关键技术障碍有望扫除
声明:本网页内容由互联网博主自发贡献,不代表本站观点,本站不承担任何法律责任。天上不会到馅饼,请大家谨防诈骗!若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
上一篇:总编辑圈点|动物实验表明:合成神经回路恢复大脑功能有希望
下一篇:AI可据蛋白结构快速设计药物分子
点击右上角微信好友
朋友圈
点击浏览器下方“”分享微信好友Safari浏览器请点击“”按钮
点击右上角QQ
点击浏览器下方“”分享QQ好友Safari浏览器请点击“”按钮