现在主流的抖音月付有三种方法:
(1)、这个就要购买虚拟类商品,马上充马上就能到帐的产品,比如游戏点卡充值、冲值卡、油卡、电话费等。因为充值一般都是极速到账,提示充值成功了,然后截图给我,就可以马上进行回款操作。这种方式的话就可以实现秒到秒回款。
(2)、平台支持第三方商家入驻,比如我在平台上有店铺,你直接到我店里买东西,下单然后再确认收货,这种叫同城配送模式,订单完成后直接返款。这种方法一般也是3~40分钟左右。
(3)、就是一般小额的话(2000以内),我会给你提供几个真实合作的商铺,让你测试下单,如果支持抖音月付的话,才能套现,不支持的话后面基本都不用操作了,只能过一段时间在来尝试了。如果你支持抖音月付套现的话,那么就可以按照要求去拍指定的商品,付完款之后把核销码截图发给商家,那边核销以后,还要需要登录的账号来核实真实情况,以上操作都完成的话,基本都能回款了,这种方法主要针对小额的客户,并且通过率还是可以的,一般也就是10~15分钟左右就能回款。
以上就是小编分享的一些方法。需要注意的是抖音月付是正规靠谱的口子,发生逾期的情况将会影响我们的征信报告,所以大家使用完成后一定要及时的还款,不要发生逾期的情况,不然头条的借款以及抖音借款下次就无法使用了,所以抖音月付用了要记得准时还歀哦。
----专业商家提现专号【客服v信1312339978电15873152131】提现秒到账-----
Nature重磅:AI击败最先进全球传统天气、气候模型,30秒生成22.8天大气模拟,准确预测40年全球变暖趋势
www.163.com 2024-07-23 08:13
撰文|马雪薇
编审|库珀
前言
来自世界气象组织(WMO)的数据显示,在过去 50 年里,平均每一天都会发生一场与天气、气候或水患有关的灾害,而每一场灾害平均会造成约 115 人死亡、约 2.02 亿美元的经济损失。
更令人唏嘘的是,近年来,由人类活动加速的气候变化,更是使得热浪、寒潮、强降水、干旱等极端天气和气候灾害异常频发。
因此,及时、准确的天气预测和气候模拟不仅可以每年帮助挽救数万人的生命,还能够降低极端天气和气候事件对人类社会和生态系统的灾难性影响。
如今,由 Google Research 研究团队及其合作者开发的人工智能(AI)模型 NeuralGCM,将天气预测和气候模拟提升到了一个新的高度——
NeuralGCM 对 1-15 天预报的准确率,媲美欧洲中期天气预报中心(ECMWF),后者拥有世界上最先进的传统物理天气预报模型;
对提前 10 天预报的准确率,NeuralGCM 与现有其他 AI 模型性能相当,甚至更好;
加入海平面温度后,NeuralGCM 的 40 年气候预测结果,与从 ECMWF 数据中发现的全球变暖趋势一致;
NeuralGCM 在预测气旋及其轨迹方面也超过了现有的气候模型。
值得一提的是,NeuralGCM 不仅在准确度方面达到甚至超过了现有传统数值天气预报模型和其他机器学习(ML)模型;在速度上也是“遥遥领先”,可以在30 秒计算时间内生成 22.8 天大气模拟;且可以比传统模型节省数量级的计算量。
视频|NeuralGCM 模拟大气的速度比最先进的物理模型更快,同时生成的预测结果精确度相当。该视频比较了 NeuralGCM 与 NOAA X-SHiELD、NCAR CAM6 两种物理模型在 30 秒计算时间内生成的大气模拟天数。其中,NOAA X-SHiELD 是一个高分辨率(0.03°)物理模型,必须在超级计算机上运行;NCAR CAM6 则是一个分辨率较低(1.0°)的纯大气物理学模型,由于计算成本较低,是科学家们更常用的选择。虽然 NeuralGCM 运行的分辨率较低(1.4°),但其精度与较高分辨率的模型相当。(来源:Google Research)
相关研究论文以“Neural general circulation models for weather and climate”为题,已发表在权威科学期刊 Nature 上。
这些结果共同表明,NeuralGCM 可以生成确定性天气、天气和气候的集合预报,在长期天气和气候模拟方面显示出了足够的稳定性。
研究团队认为,这种端到端深度学习与传统大气环流模型(GCM,表征大气、海洋和陆地的物理过程,是天气和气候预测的基础)所执行的任务是兼容的,且能够增强对理解和预测地球系统至关重要的大规模物理模拟。
此外,NeuralGCM 的混合建模方法还可以应用于其他科学领域,比如材料发现、蛋白质折叠和多物理工程设计等。
真实效果怎么样?
减少长期预报的不确定性以及估算极端天气事件,是理解气候缓解和适应的关键。
ML 模型一直被认为是天气预测的一种替代手段,具有节省算力成本的优势,甚至在确定性天气预报方面已经达到或超过了大气环流模型的水平,但在长期预报的表现常常不如大气环流模型。
在这项工作中,研究团队结合机器学习和物理方法设计了 NeuralGCM,利用 ML 组件替换或校正 GCM 中的传统物理参数化方案,由以下几个关键部分组成:
可微分的动力核心:该核心负责求解离散化的动力方程,模拟大尺度流体运动和热力学过程,受重力、科氏力和其他因素影响。动力核心使用水平伪谱离散化和垂直 sigma 坐标,并使用 JAX 库实现,支持自动微分。它模拟七个预报变量:水平风涡度、水平风散度、温度、地表压力和三种水物质(比湿、冰云水含量和液态云水含量)。
学习物理模块:该模块使用 GCM 中的单柱方法,仅使用单个大气柱的信息来预测该柱内未解析过程的影响。它使用具有残差连接的全连接神经网络,并在所有大气柱之间共享权重。神经网络的输入包括大气柱中的预报变量、总入射太阳辐射、海冰浓度和海表温度,以及预报变量的水平梯度。神经网络的输出是预报变量趋势,按目标字段无条件标准差进行缩放。
编码器和解码器:由于 ERA5 数据存储在压力坐标中,而动力核心使用 sigma 坐标系统,因此需要编码器和解码器进行转换。这些组件执行压力水平和 sigma 坐标水平之间的线性插值,并使用与学习的物理模块相同的神经网络架构进行校正。编码器可以消除初始化冲击引起的重力波,从而避免污染预测结果。
图|NeuralGCM 模型架构。NeuralGCM 结合了传统的流体动力学求解器和用于小尺度物理的神经网络。这些组件由微分方程求解器组合而成,在时间上依次向前推进系统。(来源:Google Research)
结果显示,NeuralGCM 在天气预测方面展现出强大的能力,在超短期、短期和中期时间尺度上与最先进的模型相媲美。如下:
超短期预测(0-1 天)
泛化能力:与 GraphCast 相比,NeuralGCM 在未经训练的天气条件下表现更好,因为它使用局部神经网络来预测大气垂直柱中的物理过程。
短期预测(1-10 天)
准确性:在 1-3 天的短期预测中,NeuralGCM-0.7° 和 GraphCast 的表现最佳,准确追踪天气模式的变化。
物理一致性:与其他机器学习模型相比,NeuralGCM 的预测更加清晰,避免了物理上不一致的模糊预测。
可解释性:通过诊断降水减去蒸发,NeuralGCM 的结果更具可解释性,方便进行水资源分析。
地转风平衡:与 GraphCast 相比,NeuralGCM 更准确地模拟了地转风和地转风的垂直结构及其比率。
中期预测(7-15 天)
集合预报:NeuralGCM-ENS 在 1.4° 分辨率下的集合平均 RMSE、RMSB 和 CRPS 误差均低于 ECMWF-ENS,表明其能够更好地捕捉可能的天气平均状态。